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Flow-induced forces arising during the impact
of two circular cylinders
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This paper presents numerical simulations of two-dimensional incompressible flow
around two circular cylinders in relative motion, which may result in impact. Viscous
flow computations are carried out using a streamfunction–vorticity method for two
equal-diameter cylinders undergoing a two-dimensional impact in otherwise stationary
fluid and for cases of similar impact of two cylinders in a steady incident flow. These
results are supported by potential flow calculations carried out using a Möbius
conformal transformation and infinite arrays of image singularities. The inviscid flow
results are compared with other published work and show that the inviscid forces
induced on the cylinders have an inverse square root singularity with respect to the
time to impact. All impacts considered in this paper result from steady motion of the
cylinders along the line joining their centres.

1. Introduction
Deepwater recovery of oil and gas from sub-sea reservoirs frequently involves the

deployment of very long, flexible riser pipes between the surface–production platform
and the seabed. These pipes are deployed in groups and subject to currents which cause
motion due to vortex-induced vibration (VIV) (Vandiver 1993) and wake buffeting
(Bokaian & Geola 1984). As a result of these motions adjacent risers sometimes
impact (Sagatun et al. 1999). Current industry practice is to design riser separations
sufficient to avoid this if possible, which increases platform costs. The issue of impact
damage is not clear, and impact coatings to protect risers are also considered. A related
problem, which has attracted a considerable amount of research, is that of calculating
the flow field around two fixed cylinders in close proximity in a uniform incident flow.
Zdravkovich (2003) has described a large number of such cases, which are highly
relevant to exterior flow around free pipeline spans and to more complex flows which
arise in heat transfer equipment. Previous investigation of the forces arising when
two bodies impact one another in a fluid has mainly focused on spheres and circular
cylinders and is often based on potential flow analysis. The potential flow field of two
cylinders in proximity in a uniform flow, or equivalently of a cylinder close to a plane
wall bounding a uniform flow, is usually computed by setting up the dipole image
system which satisfies the normal-velocity boundary condition on the solid surfaces.
This results in an infinite series of dipoles within the bodies. A first such attempt to
calculate the inviscid force during the impact of two circular cylinders immersed in
inviscid fluid was made by Hicks (1879), who also investigated the similar problem of
two spheres moving in a fluid (Hicks 1880). Dalton & Helfinstine (1971) developed the
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Figure 1. The physical and the transformed planes.

image source method involving an infinite array of images, to model two-dimensional
potential flow around a group of circular cylinders in an unsteady incident flow;
this problem is relevant to forces induced by waves and motion of elements of
offshore oil platforms. They computed lift, drag and inertia coefficients for a range
of fixed geometries and separations including cases of cylinders in contact. Small
separations were shown to have a large effect on the force coefficients. Wang
(2004) used a different two-dimensional method to evaluate the inviscid force
developed between two cylinders. Using a Möbius conformal transformation and
Fourier series he derived general formulae for the unsteady problem of two circular
cylinders expanding and translating arbitrarily. Crowdy (2006) considered the steady
irrotational flow problem of a uniform stream around multiple circular cylinders of
zero circulation. In Landweber Chwang & Guo (1991) and ? an integral-equation
procedure was used to investigate the problem of an ice mass approaching an
offshore structure moving towards a central impact. This problem was simplified to
the case of a moving cylinder approaching a stationary one until impact.

In the present work various cases are considered of the unsteady problem of the
impact of two equal-size circular cylinders. In the first part, the fluid is considered
inviscid, and the behaviour of the potential flow induced force is investigated and
compared with other inviscid studies. In the second part of the paper the same
problems are considered for viscous flow by solving the streamfunction–vorticity
form of the Navier–Stokes equations.

The main aim of the paper is to determine the behaviour of the force between
the cylinders right up to the moment of impact. Although the ‘perfect’ normal two-
dimensional impact of two smooth circular cylinders never occurs exactly, the force
which arises provides an upper limit to the hydrodynamic forces which are generated
by more general impacts. The inviscid analysis done first, allows the analytical
behaviour of the force to be investigated, which in turn helps in the evaluation of the
viscous forces.

An important issue in multi-body flows is the volume flux passing between the
bodies, and the (inviscid) evaluation of the difference �Ψ in the surface values of the
streamfunction on the bodies is relevant for the viscous streamfunction–vorticity flow
computations.

2. Potential flow theory
2.1. Möbius conformal transformation

The two-dimensional potential flow field around two cylinders in the axis system
shown in figure 1 is considered. The flow may be due to motion of the fluid at infinity
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or relative motion of the cylinders or both. The Möbius conformal transformation

ζ =
z − λ

λz − 1
(2.1)

is applied to transform this flow field into that between two concentric cylinders,
where z = x + iy in the physical plane and ζ = ξ + iη in the transformed plane (see
figure 1 and, e.g. Saff & Snider 2003). In (2.1)

λ =
1 + ch +

√
(c2 − 1)(h2 − 1)

c + h
.

In the transformed plane, the centres of both circles are located at the origin. The
outer cylinder has a radius equal to one, while the radius Ro of the inner circle is

Ro =
ch − 1 −

√
(c2 − 1)(h2 − 1)

h − c
.

In general cases since the cylinders may have circulation it is convenient to work with
the streamfunction Ψ which is single-valued, and some basic results for Ψ are now
derived.

2.2. Streamfunction for a point vortex in the presence of two circular cylinders

We start by examining the flow field around two stationary cylinders in the presence
of a single vortex at zo = xo + iyo. This fundamental case can also provide as a
dipole the main component of the analysis in the transformed plane in which a
free stream is present as well as the method of calculating �Ψ in the viscous
streamfunction–vorticity computations. It is necessary to consider various possibilities
for the circulation around the cylinders. The case in which the whole flow field has
zero circulation made up of zero circulation around one of the cylinders and a
‘balancing’ circulation equal and opposite to that of the point vortex in the flow
field around the other is considered first. The case of a point vortex in the flow field
and zero circulation around both cylinders may be evaluated from this. The case of
arbitrary circulation around the cylinders is considered in the next section.

The point in the transformed plane into which the vortex transforms under the
Möbius transformation is denoted by ζo = ξo + iηo =Reiφo . The complex potential due
to a point vortex of circulation Γ placed in isolation at this point is

w(ζ ) = iκ ln(ζ − ζo), (2.2)

where κ = Γ/(2π), is the strength of the vortex. If we transform this potential back
to the z-plane we obtain corresponding to the single vortex in the ζ plane

w(z) = iκ ln(z − zo) − iκ ln

(
z − 1

λ

)
+ constant,

the potential for a vortex of circulation Γ at zo = (ζo − λ)/(λζo − 1) together with
−Γ at z = 1/λ inside cylinder A. Hence the case of a single vortex in the flow
together with opposite circulation on one cylinder is the simplest to consider first.
Using (2.2), an appropriate image system to satisfy the no-penetration boundary
condition on both circular boundaries can now be constructed. This consists of
an infinite array of image vortices. Each image in one cylinder of a given vortex
generates a further image in the outer cylinder and so on. The full image system,
presented in tables 1 and 2, shows consistently that the circulation around the inner
cylinder is zero and around the outer one is equal to Γ . (The direction of the outer
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Strength, Radial coordinate, Strength, Radial coordinate
region I region I region II region II

i = 1 −κ 1/ξo −κ R2
o/ξo

i = 2 κ ξo/R
2
o κ R2

oξo

i = 3 −κ 1/(ξoR
2
o) −κ R4

o/ξo

i = 4 κ ξo/R
4
o κ ξoR

4
o

i = 5 −κ 1/(ξoR
4
o) −κ R6

o/ξo

...
...

...
...

...

Table 1. Position and strength of the point vortices, generated using the method of images in
the ζ -plane.

Index Strength, Radial coordinate, Strength, Radial coordinate,
region I region I region II region II

Odd −κ 1/(ξoR
i−1
o ) −κ Ri+1

o /ξo

Even κ ξo/R
i
o κ ξoR

i
o

Table 2. Position and strength of the arbitrary ith image vortex in the ζ -plane, where
(i = 1, 2, . . . ∞).

cylinder reverses under the transformation, and the image system within the inner
cylinder is constructed from pairs of vortices of equal and opposite circulation.) The
advantage of using the Möbius transformation is that the whole system of images in
the ζ -plane is co-linear. Using De Moivre’s theorem and a standard expansion for
the logarithmic function, the imaginary part of the complex potential (at ζ = reiφ)
generated by the point vortex, at Reiφo , in the presence of the pair of cylinders is
given for this case by the following equations:

Ψ = κ ln R − κ
∑∞

n=1[(rR
−1)nn−1 cos nθ] r/Ro � 1,

Ψ = κ ln r − κ
∑∞

n=1[(Rr−1)nn−1 cos nθ] r/Ro > 1,

}
(2.3)

where θ = φ − φo. Using the coordinates and strengths of the image vortices given in

table 2, and manipulating the infinite sums, cancellation of equal and opposite terms
gives

Ψ = κ lnR − κ

∞∑
n=1

[(rR−1)nn−1 cos nθ] + κ

∞∑
n=1

[(rR)n−1 cos nθ]

+ κ

∞∑
n=1

{
n−1 cos nθ(Rn − R−n)(rn − r−n)

[
R2n

o

(
1 − R2n

o

)−1]}
r/Ro � 1,

(2.4a)

Ψ = κ ln r − κ

∞∑
n=1

[(Rr−1)nn−1 cos nθ] + κ

∞∑
n=1

[(rR)n−1 cos nθ]

+ κ

∞∑
n=1

{
n−1 cos nθ(Rn − R−n)(rn − r−n)

[
R2n

o

(
1 − R2n

o

)−1]}
r/Ro > 1,

(2.4b)
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(a) (b)

Figure 2. Potential flow streamlines for a point vortex (a) given by (2.5) and (b) calculated
by Lee (2000) (published with permission).

The first three terms of both (2.4a) and (2.4b) sum to the same expression for
Ro � r � 1:

Ψ (r, φ) = κ ln
√

R2 − 2rR cos θ + r2 − κ ln
√

1 − 2rR cos θr2R2

+ κ

∞∑
n=1

[
cos nθ

n

(
Rn − 1

Rn

)(
rn − 1

rn

)(
R2n

o

1 − R2n
o

)]
. (2.5)

Using (2.5), the streamfunction value at the boundaries, r = 1 and r = Ro, can also
be evaluated. This gives the difference �Ψ between the streamfunction value on the
two cylinders; �Ψ is the flux between the cylinders due to the flow and is required
for the boundary condition on Ψ in a streamfunction–vorticity computation. Quite
often computations of flow fields, which are more than doubly connected, assume a
value for this rather than evaluating it independently. From (2.5)

Ψ (1, φ) = 0 and Ψ (Ro, φ) = κ lnR.

Therefore, the streamfunction difference between the two cylinders for this case is

�Ψ = Ψ (1) − Ψ (Ro) = −κ lnR, (2.6)

where R is the radial coordinate of the vortex position in the transformed plane.
Equation (2.6) shows that the flux between two cylinders, one with zero circulation

and the other with circulation equal and opposite to the point vortex, together with
the point vortex in the flow field depends only on the strength of the vortex and
its position in the ζ -plane. Omitting the circulation (−Γ ) around cylinder A leads
to a term −iκ ln(ζ − λ−1) in w(ζ ) representing the net circulation Γ at infinity of
the whole flow field (with ζ = λ−1 corresponding to z = ∞). This circulation may be
treated similarly as a point vortex with a similar array of images to table 1 in the
ζ -plane.

Thus, �Ψ between two cylinders in the z-plane, due to the presence of a point
vortex of circulation Γ , with neither of the two cylinders having circulation, is

�Ψ = −κ ln(λR). (2.7)

The streamline contours generated by the present method for this case with a point
vortex at a point (−0.4, 1.2) of the physical plane and the ratio of cylinder radii
RB/RA = 0.7, are compared in figure 2 with those given by Lee (2000).
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2.3. Streamfunction for arbitrary circulation around two circular cylinders
(in the absence of point vortices in the flow field)

The flow induced by arbitrary circulation around the A- and B-cylinder (see figure 1),
ΓA and ΓB respectively, in the absence of point vortices in the flow field is considered
next. This case can be constructed using the result of the previous section, by a
combination of two point vortices in the ζ -plane: a point vortex of circulation ΓB at
the centre of the concentric circles and a point vortex of circulation −(ΓA + ΓB) at
the singular point (λ−1, 0). Using (2.7), the streamfunction difference for this case is

�Ψ = −κA ln λ − κB ln(λRo).

Any case of a flow containing point vortices can now been obtained from a linear
sum of the above results.

2.4. Streamfunction for a uniform stream incident on two circular cylinders

We consider the flow field due to a free stream around two cylinders, neither of which
have any circulation. Consider two cylinders on the horizontal axis of the physical
plane, subject to a free stream at an angle α relative to this axis. Then, the complex
potential due to the free stream is

w(z) = U∞ze−iα.

Under the Möbius transformation, the free stream complex potential transforms to

w(ζ ) = −U∞

(
1 − λ−2

ζ − λ−1

)
e−iα + constant,

which represents the complex potential of a dipole of strength μ = − U∞(1 − λ−2) at
the singular point (λ−1, 0) of the transformed plane. The direction of the dipole’s axis
depends upon the incidence angle α of the free stream.

The general case can be derived by considering the two basic cases of α = 90◦

(cylinders side-by-side with respect to the free stream) and α = 0◦ (tandem
arrangement).

The first of these (α = 90◦) is equivalent to a flow due to a source–sink dipole at
the point (λ−1, 0) in the transformed plane with its axis at right angles to the real axis
or equivalently a doublet vortex (Milne-Thomson 1968), with its axis parallel to the
real axis. The streamfunction for this may therefore be obtained from the analysis for
a single vortex in § 2.2.

Consider two vortices of equal and opposite strength, placed in the transformed
plane, at (a + ε, 0) and (a − ε, 0) respectively, where a = λ−1 and 0 <ε � 1. The
vortex dipole streamfunction is obtained in the limit κ → ∞ and ε → 0 with μ = 2κε

finite:

Ψ (r, φ) =
μ

a
+

μ

a

∞∑
n=1

(
rn

an
cos nφ

)
+

μ

a

∞∑
n=1

(rnan cos nφ)

+
μ

a

∞∑
n=1

[
cos nφ

(
an +

1

an

)(
rn − 1

rn

)(
R2n

o

1 − R2n
o

)]
.

Replacing the first two series with their exact sums, the streamfunction can be written
as
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Ψ (r, φ) = μλ

{
1 − rλ cosφ

1 − 2rλ cos φ + λ2r2
+

λr cos φ − r2

λ2 − 2λr cos φ + r2

+

∞∑
n=1

[
cos nφ

(
rn − 1

rn

)(
R2n

o

1 − R2n
o

)(
1 + λ2n

λn

)]}
. (2.8)

From (2.8)

Ψ (1, φ) = 0 and Ψ (Ro, φ) = μλ

and

�Ψ = −μλ. (2.9)

In the case of two cylinders aligned with the free stream (α = 0), an analysis similar
to the one above may be carried out with the vortex doublet rotated by 90◦. The
streamfunction for this case, a vortex doublet at (λ−1, 0) directed parallel to the
imaginary axis of the transformed plane, is

Ψ (r, φ) = μλ

{
−rλ sinφ

1 − 2rλ cosφ + r2λ2
+

rλ sinφ

λ2 − 2rλ cosφ + r2

+

∞∑
n=1

[
sin(nφ)

(
1

λn
− λn

)(
rn − 1

rn

)(
R2n

o

1 − R2n
o

)]}
. (2.10)

From (2.10), or by symmetry, the streamfunction difference between the cylinders for
this case is

�Ψ = Ψ (1, 0) − Ψ (Ro, φ) = 0.

For the general case of a uniform flow at an angle α to the axis joining the centres
of the cylinders, Ψα(r, φ) is a sum of the previous two results:

Ψα(r, φ) = Ψ0(r, φ) cosα + Ψ90(r, φ) sinα

= μλ cos α

{
−rλ sinφ

1 − 2rλ cos φ + r2λ2
+

rλ sinφ

λ2 − 2rλ cos φ + r2

+

∞∑
n=1

[
sin(nφ)

(
1

λn
− λn

)(
rn − 1

rn

)(
R2n

o

1 − R2n
o

)]}

+ μλ sinα

{
1 − rλ cos φ

1 − 2rλ cos φ + λ2r2
+

λr cos φ − r2

λ2 − 2λr cos φ + r2

+

∞∑
n=1

[
cos nφ

(
rn − 1

rn

)(
R2n

o

1 − R2n
o

)(
1 + λ2n

λn

)]}
. (2.11)

Streamline contours for the case of a uniform stream at incidence α = − 30◦, around
two cylinders of radius ratio RA/RB = 0.8 and with distance between their centres
equal to 2.2RB , are compared in figure 3 with the results calculated by Lee (2000) for
the same flow case.

2.5. Cases of cylinders in relative motion

A similar analysis can be developed when two cylinders are in relative motion to one
another. Again the case of zero circulation on each of the two cylinders is considered.
Attention is focused on cases in which the cylinders move with constant velocity along
their line of centres, resulting in impact, and there is neither a free stream nor any
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(a) (b)

Figure 3. Streamlines due to a free stream in the presence of two circular cylinders, (a) given
by (2.11) and (b) calculated by Lee (2000) (published with permission).

vortices present in the flow field. At the impulsive start of the motion, the circulation
around each of the cylinders is identically zero. Assume that in a stationary fluid the
A-cylinder (see figure 1) is stationary, and its centre is at the origin of the reference
frame (x, y). The second cylinder (B-cylinder) has its centre at the point (xB, 0) with
respect to the same reference frame. For time t > 0, the B-cylinder moves with a
velocity component −Ux,B along the x-axis, where Ux,B is a positive quantity. In
isolation the moving circular cylinder may be represented by a source–sink dipole,
whose direction is opposite to the movement of the cylinder. Again the streamfunction
for this case can be obtained using a dipole method similar to that in § 2.4. When
this method is applied in the physical plane, the x-coordinate of the dipole images, is
given by a continued fraction expression (see, for example, Hicks 1879). If the method
of images is applied in the transformed plane, as above, the difficulty introduced by
the continued fraction expressions is bypassed, and it is possible to obtain simpler
expressions for the streamfunction. A dipole of strength μ, at a point (xB, 0) in the
physical plane, is transformed to a dipole of strength μ(λ2 −1)/(1−λxB)2, at the point
(xB − λ)/(λxB − 1), in the transformed plane. The dipole is inside the inner cylinder in
the transformed plane and therefore, the analysis carried out in § 2.4 must be modified
here, since in that section the dipole was between the cylinders. The same approach
is followed as before and the dipole is equated to a vortex doublet at right angles.
Consider a point vortex of strength κ at point ζo = Reiφo of the transformed plane. To
satisfy the boundary conditions on both cylinders, an infinite series of point vortices
inside the inner cylinder and outside the outer cylinder has to be constructed. The ith
point vortex image in the inner cylinder, has strength κ and is located at ζi =R2i−2

o R.
Note that i =1, 2, . . . , ∞. The ith point vortex image outside the outer cylinder has
strength −κ and lies at the point ζi = R2−2i

o R−1. Using (2.3), the streamfunction for a
point vortex of strength κ at the point ζo of the transformed plane is constructed:

Ψ (r, φ) = −κ

∞∑
i=1

ln r − κ

∞∑
i=1

lnR − κ lnRo

∞∑
i=1

(2i − 2)

− κ

∞∑
i=1

∞∑
n=1

[(
RR2i−2

o

)n cos n(φ − φo)

n

(
rn − 1

rn

)]
. (2.12)

The third-term infinite series in (2.12) diverges, but in the present case the application
will be as a vortex doublet. Thus, this term is cancelled by the corresponding term
for the opposite sign vortices. Using (2.12), the streamfunction of a vortex pair at
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(Ro ± iε), taking the limit ε → 0, setting μ = 2κε for the dipole strength, expanding
the cosine terms and cancelling equal and opposite terms, is

Ψ (r, φ) = −μ

R

∞∑
i=1

∞∑
n=1

[(
RR2i−2

o

)n
sin(nφ)

(
rn − 1

rn

)]
. (2.13)

The dipole strength μ is

μ =
−Ux,BR2

B(λ2 − 1)

(1 − λxB)2
.

The streamfunction is constant on the surface of the stationary cylinder but a function
of the angular coordinate φ on the moving cylinder. In the transformed plane, from
(2.13),

Ψ (1, φ) = 0 and Ψ (Ro, φ) = −μ

R

∞∑
i=1

∞∑
n=1

[(
RR2i−2

o

)n
sin(nφ)

(
Rn

o − 1

Rn
o

)]

Summing the series, for a general point ζ = Roe
iφ on the moving cylinder,

Ψ (Ro, φ) = −μ

R

[
RRo sinφ

R2
o − 2RoR cosφ + R2

+
R sinφ

1 − 2R cos φ + R2

]
.

The streamfunction difference �Ψ between the two closest points on the two cylinders
is zero by symmetry of the flow.

In addition to the above analysis for the streamfunction, the velocity potential Φ

is required for the evaluation of the time-dependent force. It is convenient in this
case to use a source doublet instead of a vortex doublet because of the multi-valued
behaviour of the potential around a vortex. The velocity potential, due to a source
dipole and its images, satisfying the boundary conditions on the cylinders is

Φ(r, φ) = −μ

R

∞∑
i=1

∞∑
n=1

[(
RR2i−2

o

)n
cos nφ

(
rn +

1

rn

)]
(2.14)

The strength μ of the dipole in (2.14) is (λ2 −1)/((1−xB(t)λ)2), where xB(t) represents
the x-coordinate of the moving cylinder in the z-plane at time t . The velocity potentials
on the surfaces of the stationary and the moving cylinders, respectively, are

Φ(1, φ) = −2μ

R

∞∑
i=1

∞∑
n=1

[(
RR2i−2

o

)n
cos nφ

]
,

Φ(Ro, φ) = −μ

R

∞∑
i=1

∞∑
n=1

[(
RR2i−2

o

)n
cos nφ

(
Rn

o +
1

Rn
o

)]
.

The above results have been derived for the case in which one cylinder is stationary
and the other cylinder is moving relative to it in otherwise stationary fluid. Streamlines
calculated from (2.13) are shown in figure 4. A fundamental case of interest, because
of its symmetry, is the case in which both cylinders approach one another along their
line of centres at the same speed in a stationary fluid. For potential flow this case
is identical to a single cylinder impacting a plane surface. Using (2.13) and (2.14),
the expressions for the streamfunction and potential on the surface of the cylinder
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Figure 4. Streamlines obtained by the present method for the case of a moving cylinder
approaching a fixed one.

Figure 5. Streamlines obtained by the present method for the case of two moving cylinders
approaching each other in-line with equal and opposite velocity components (frame of reference
axes of symmetry).

moving in the positive x-direction are:

Ψ (r, φ) = −2
μ

R

∞∑
i=1

∞∑
n=1

[(
RR2i−2

o

)n
sin(nφ)

(
rn − 1

rn

)]

+ U∞
r(λ2 + 1) sin φ

λ2r2 − 2λr cos φ + 1
,

Φ(r, φ) = −2
μ

R

∞∑
i=1

∞∑
n=1

[(
RR2i−2

o

)n
cos nφ

(
rn +

1

rn

)]

+∞
λr2 − r(λ2 + 1) cosφ + λ

λ2r2 − 2λr cosφ + 1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)

Streamlines calculated from (2.15) are shown in figure 5. Results can similarly
be derived for the case in which the relative motion between two cylinders is
perpendicular to their line of centres. If the moving cylinder, centred at the point
(xB, 0), moves with a velocity component −Uy in the y-direction only (Uy > 0), while
the other is held stationary, an analysis similar to the one above shows that

Ψ (r, φ) = −μ

R

∞∑
i=1

∞∑
n=1

[(
RR2i−2

o

)n
cos nφ

(
rn − 1

rn

)]
,

where μ = −UyR
2
B(λ2 − 1)/(1 − λxB)2. Carrying out the double summation Ψ (1) = 0

and

Ψ (Ro, φ) = −μ

R

[
R(Ro cos φ − R)

R2
o − 2RoR cosφ + R2

+
R(cosφ − R)

1 − 2R cosφ + R2

]
,

where φ is the angular coordinate on the moving cylinder in the transformed plane.
The general case in which one cylinder moves at constant velocity in any direction
and the other cylinder is fixed can be derived as a linear sum of the two special cases
above.
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3. Forces induced on each of two circular cylinders approaching in-line
First we consider the case in which one cylinder remains fixed and the other moves

towards it. The pressure at an arbitrary point, in an inviscid flow field, with respect
to an inertial reference frame is given by the Bernoulli equation

p

ρ
= −∂Φ

∂t
− 1

2
q2 + C(t),

where q =
√

u2 + v2, and C(t) is a spatially constant term. If q denotes the absolute
velocity of the fluid at a point on a moving cylinder (centre at xo = 0 at time of
evaluation), which is moving with velocity (Ux, Uy), the Bernoulli equation becomes

p

ρ
= −∂Φ

∂t
− ∂Φ

∂xo

dxo

dt

∣∣∣∣
xo=0

− ∂Φ

∂yo

dyo

dt

∣∣∣∣
yo=0

− 1

2
q2 + C(t). (3.1)

If the cylinder moves only with an x-velocity component Ux , then (3.1) simplifies to

p

ρ
= −∂Φ

∂t
− Uxu − 1

2
q2 + C(t),

where u = ∂Φ/∂x. The part F I
x of the force component Fx in the positive x-direction,

resulting from the time derivative of the velocity potential, can be evaluated by using
the extension of Blasius’s theorem for a moving cylinder:

F I
x = −iρ

∂

∂t

∮
C

w dz,

where C is the surface of the cylinder. Transforming the integration parameter from
z to ζ , the integration contour CA of the stationary cylinder in the physical plane
transforms to the contour C ′

A (r = 1) in the ζ -plane; the part contributed by the
∂Φ/∂t term on the stationary cylinder is given as follows:

F I
x = −iρ

∮
CA

∂w(z)

∂t
dz = iρ

∂

∂t

(
λ2 − 1

λ2

∮
C ′

A

w(ζ )

(ζ − λ−1)2
dζ

)
. (3.2)

The integrand f (ζ ) = w(ζ )/(ζ − λ−1)2 of (3.2) is evaluated using the residue theorem.
Expressing w in terms of its singularities, f (ζ ) is written as

f (ζ ) =
w(ζ )

(ζ − λ−1)2
=

[ ∞∑
i=1

(
μR2i−2

o

ζ − RR2i−2
o

)
−

∞∑
i=1

(
μR−2R2−2i

o

ζ − (RR2i−2
o )−1

)]
1

(ζ − λ−1)2
.

The singularities are at points ζ1 = RR2i−2
o , ζ2 = (RR2i−2

o )−1 and ζ3 = λ−1. Only the first
and third set of points are inside the contour C ′

A of the stationary cylinder in the ζ -
plane. Therefore, only the residues at these singularity point sets have to be evaluated
to obtain the force. Combining the expressions for the residues and substituting them
in (3.2), the F I

x part of the force on the stationary cylinder is obtained as

F I
x = −2πρ

∂

∂t

{
λ2 − 1

λ2

[ ∞∑
i=1

Res[f (ζ ), ζ3] +

∞∑
i=1

Res[f (ζ ), ζ1]

]}
.

The same part of the force on the moving cylinder is given by

F I
x = −iρ

∮
CB

∂w(z)

∂t
dz = −iρ

∮
C ′

B

∂w(ζ )

∂t

dz

dζ
dζ.
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Figure 6. Inviscid force coefficient CX when a moving cylinder impacts a stationary cylinder.
�, Present method moving; 	, (Ux∂Φ/∂x not included); �, Present method stationary; �,
Wang (2004) moving; �, Wang (2004) stationary; �, Landweber et al. (1991) moving; 
,
Landweber et al. (1991) stationary.

The transformed contour of the moving cylinder in the ζ -plane C ′
B is an expanding

circle, i.e. a moving boundary. Therefore, the order of the time derivative and the
spatial integration cannot be simply interchanged. As the boundary expands with
time, the singularity points (RR2i−2

o , 0) also move, but they remain enclosed by the
expanding contour C ′

B . Appendix shows that the two operations may be interchanged.
The evaluation of this part of the force on the moving cylinder is now greatly
simplified. Using a result obtained previously when evaluating the sum of the residues
at points (RR2i−2

o , 0), F I
x for the moving cylinder is given by

F I
x = 2πρ

∂

∂t

[
λ2 − 1

λ2

∞∑
i=1

Res[f (ζ ), ζ1]

]
.

F I
x was also calculated as a check by integrating ∂Φ/∂t numerically around the

cylinder, and the result was shown to agree with the above result.
The contribution to the pressure term due to the velocity in Bernoulli’s equation

−1

2
ρq2 = −1

2
ρ

∣∣∣∣dw

dz

∣∣∣∣
2

is now calculated in terms of the speed |dw/dz| on the cylinders’ surfaces, using finite
difference differentiation and numerical integration around the Ci boundary:

F II
x = −1

2
ρ

∮
Ci

q2 cos θdθ.

The cross-term in the Bernoulli equation for a moving body uUx is also integrated
numerically around the cylinder. Combining the three terms of the force gives the
total force on each cylinder. The force coefficient on each cylinder in the x-direction
Cx =Fx/(0.5ρU 2

2 D) is plotted against the dimensionless time t∗ = Ux,B(t − timpact )/D,
in figure 6, where timpact denotes the time at which impact occurs and D the cylinder’s
diameter. In this figure the results by Wang (2004) and Landweber et al. (1991) for
the total force on the cylinders are also presented for comparison.
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Figure 7. Inviscid force coefficient CX when two moving cylinders impact symmetrically in
a stationary fluid. —–, (Narrow gap inviscid solution; +, Wang (2004); �, Present method;
�, (Ux∂Φ/∂x) not included).

The three sets of results all agree exactly for the stationary cylinder. On the other
hand, for the force on the moving cylinder there is a disagreement. While the present
results agree with ?, the curve predicted by Wang (2004) is not the same. The reason
appears to be omission of the cross-term contribution Ux∂Φ/∂x to ∂Φ/∂t from
the spatial variation of the velocity potential on a moving cylinder as is shown by
agreement between Wang’s curve and the present computations when this term is
omitted.

In the case of both cylinders moving towards each other symmetrically, the same
procedure can be followed to evaluate the inviscid force from the Bernoulli equation
using the results for Φ and Ψ obtained in § 2.5. Figure 7 shows the results for the
force coefficient predicted by the present method and a second set of points evaluated
without including the above cross-term, Ux∂Φ/∂x, which agrees with the results by
Wang (2004). Figure 8 shows the forces plotted on logarithmic scales for both cases.
These plots suggest that for all these cases the inviscid force is singular at impact,
tending to infinity like t∗−1/2, as t∗ → 0.

3.1. A narrow gap analysis

An approximate narrow gap inviscid analysis may be carried out, just before impact,
to establish the behaviour of the forces on the cylinders with the time to impact t∗ → 0.
Consider first the case of (a) two equal-diameter cylinders moving towards each other
along their line of centres, with equal and opposite velocities Ux in an otherwise
stationary fluid (U∞ = 0). In the diagram shown in figure 9, which shows half the gap,
of total width bo(t) between the cylinders, ±Ux is the speed of each cylinder. In this
approximate analysis v, the speed of the squeezed flow in the y-direction, is assumed
to be uniform across the gap, as is the pressure p; i.e. a quasi-one-dimensional
analysis is assumed. By continuity v = 2Uxy/xo, where x, yo denote the coordinates of
the cylinder’s surface. From this, the time derivative of the velocity potential in the
gap can be obtained as a function of θ , the angular coordinate around either cylinder,
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Figure 8. Logarithmic plot of CX . For cases shown in figures 6 and 7. Symbols as in those
figures.
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Figure 9. Schematic diagram for the narrow gap solution using the Euler equations.

as

∂Φ

∂t
= U 2

x

∫ θ

0

sinφ cos φ

(σ − cos φ)2
dφ =

−U 2
x cos θ

σ − cos θ
− U 2

x ln(σ − cos θ) +
U 2

x

σ − 1
+ U 2

x ln(σ − 1),

where σ = 1 − 2t∗ is a parameter based on the dimensionless time t∗. The pressure is
calculated from Bernoulli’s equation

p

ρ
=

po

ρ
− ∂Φ

∂t
− 1

2
v2,

where po is a constant. The singular part of the force, as the gap closes, arises from
the pressure in the narrowest part of the gap. Therefore the singular part of the force
will not be affected by the location at which it is assumed that pressure is equal to
ambient pa . For simplicity this is assumed to be at the ends of the gap: θ = ± π/2.
It is further assumed that p =pa for θ > π/2 or < − π/2, i.e around the whole base
region of each cylinder. The surface pressure is therefore given by
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Figure 10. Logarithmic plot of the dimensionless streamfunction flux between two cylinders
in a free stream transverse to the line of centres as a function of the dimensionless distance
between them.

p − pa

ρ
= − U 2

x

σ − 1
− U 2

x ln(σ − 1) +
U 2

x cos θ

σ − cos θ
+ U 2

x ln(σ − cos θ),

− U 2
x sin2 θ

2(σ − cos θ)2
when |θ | �

π

2
;

0 when |θ | >
π

2
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.3)

Now (3.3), which gives the pressure on the cylinder, is integrated to give an estimate
of the force on the cylinder. Thus

CX =
1

σ 2
+

∫ π/2

0

[
σ (σ 2 − 1)

(σ − cos φ)2
+

σ 2 − 1

σ − cosφ
− 3 cosφ − 2σ

]
dφ.

Carrying out the integration gives the in-line force coefficient:

CX =
1

σ 2
− 3 − πσ +

2(2σ 2 − 1)√
σ 2 − 1

tan−1

√
σ + 1

σ − 1
. (3.4)

The inviscid force from this approximate analysis is plotted in figures 7 and 8, showing
good agreement with the exact computed results as t∗ → 0. Taking the largest order
term in (3.4) shows that

CX → (π/2)(−t∗)−1/2 as t∗ → 0.

A similar narrow gap analysis can be applied to (b) two stationary cylinders,
separated by a narrow gap β = bo/D, in a free stream U∞ transverse to the line
of centres (figure 9). In this case the volume flow between the cylinders must be
determined. The difference in values of the streamfunctions on the surfaces of the
two cylinders, �Ψ , can be shown for the case in which there is zero circulation on
each of the cylinders, as assumed here, to tend to zero as the gap is made as small as
β1/2. Figure 10 shows a logarithmic plot of the dimensionless �Ψ ∗ computed from
(2.9) as a function of dimensionless gap size β , down to very small gap sizes. It can
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be seen that a close approximation is given by

�Ψ ∗ =
�Ψ

U∞D
�

√
2β1/2.

Using this to give the volume flow through the gap and the same narrow gap
approximation as above shows that in this case

CX = − �Ψ ∗2

(σ 2 − 1)

(
1

σ 2
+

2√
σ 2 − 1

tan−1

√
σ + 1

σ − 1

)
,

which indicates that CX → πβ−1/2/
√

2 as β → 0. The inviscid forces on the cylinders
in this case are attractive, which will be seen to be the opposite of the case for
viscous flow. For the general case, the two narrow gap flow fields may be combined
to give the result for a pair of cylinders moving towards each other at speed ±Ux in a
transverse free stream U∞. The velocity v in the gap is antisymmetric with respect to
θ in case (a) but symmetric with respect to θ in case (b). Therefore, while the squared
terms from each velocity distribution in Bernoulli’s equation will contribute to the
force coefficient CX , the cross-product term from the two velocity distributions (a)·(b),
being antisymmetric, will not. Also the potential having the opposite symmetry to
the velocity with respect to θ , the ∂Φ/∂t term for the now unsteady flow field of case
(b) is antisymmetric and does not contribute, whereas in case (a) it does. This shows
that for the largest terms, in the limit as the gap closes, the asymptotic result is

lim
t∗→0

CX =
π

2

(
γ 2 − 1

γ 2 + 1

)
|t∗|−1/2 + O(1),

where γ is the velocity ratio Ux/U∞. Hence, the singularity in the force coefficient
changes sign for inviscid flow at a velocity ratio Ux/U∞ =1, at which value the force
remains finite right up to impact CX(t∗ = 0) = − (π/2 + 3/2). Figures 11 and 12 show
values of the inviscid force coefficient CX for a range of values of the velocity ratio
Ux/U∞, computed by combining the image system solutions of § 2.4 and the steady
gap flow above. The results are compared with the narrow gap analysis. In the case
Ux/U∞ = 1, for accuracy, three computations with different time steps, taken to very
small values, are shown to approach the finite force limit at impact.

4. Viscous flow
4.1. Overview of the numerical method

In this section the viscous impact of two circular cylinders is investigated, using an
Eulerian–Lagrangian numerical code (Willden & Graham 2001) to solve the two-
dimensional streamfunction–vorticity formulation of the Navier–Stokes equations:

∇2Ψ = −ω (4.1)

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= ν∇2ω. (4.2)

As before Ψ denotes the streamfunction; ω is the vorticity of the flow field; u,v are the
x and y velocity components of the fluid; and the centres of the cylinders lie on the
x-axis. The method used solves (4.1) and (4.1) on an unstructured mesh of triangles
fitted to the bodies as shown in figure 13 over a sequence of time steps. A split of
(4.2) into diffusion and convection sub-steps within each time step is carried out.
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Figure 11. Force coefficient CX as cylinders approach impact in the presence of a cross
flow U∞ (�t∗ = 5 × 10−5 except as shown). �, (Ux/U∞ = 0); �, (0.5); �, [Ux/U∞ = 1.0; �,
(�t∗ = 5 × 10−6); +, (�t∗ = 5 × 10−7)]; �, (2.0); �, (∞). Narrow gap solutions: − · − · −,
(Ux/U∞ = 0); − − −, (0.5), · · · (1.0); − · · − · · −, (2.0); —–, (∞).
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Figure 12. Logarithmic plot of the force coefficient CX for cylinders impacting in a
transverse flow. Symbols as in figure 11.

First, in each time step, the Poisson’s equation is solved using the Galerkin weighted
residual finite element method, applying at this step only the no-penetration boundary
condition on the cylinders’ surfaces. This is applied as a Dirichlet condition on the
streamfunction Ψ , using the results for the streamfunction difference �Ψ between the
cylinders obtained in the previous sections. Since Ψ contains an arbitrary constant,
the value Ψ =0 can be set at a reference point on a boundary. In the present case
this point was taken to be on the surface of one of the cylinders, with Ψ = 0 over
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Figure 13. Unstructured mesh used for the case of plane impact.
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Figure 14. Effect of L on CX . Re = 100, �, (L/D = 3); �, (L/D =5); �, (Re = ∞, inviscid
computations); —, Narrow gap inviscid solution.

the whole surface if it was stationary in the frame of reference used. From the earlier
mesh-free analysis of § 2, (2.7), (2.9) and (2.15) then provide the value of Ψ on the
other cylinder respectively for the effects of vortices in the flow field, the free stream
and the relative motion of the cylinders. The value of Ψ also calculated in § 2 for the
effect of cylinder circulation is not required, since each cylinder’s circulation in no-slip
viscous flow is carried in the boundary layers, which together with the shed vorticity
is represented by the discrete vortices in this method. Similarly, the value of Ψ on the
outer boundary of the mesh is calculated from (2.5), (2.11) and (2.15). This procedure
was followed to calculate all the boundary conditions for Ψ at this stage in each time
step except that it was found that including the contribution (2.5) for the effect of
the vortices in the flow field on the outer boundary condition led to a computational
instability. It was therefore omitted from the outer boundary condition, since the total
circulation of the flow in the computation domain remains close to zero throughout
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the flow development, and the outer boundary condition was calculated from (2.11)
and (2.15) only.

Then the change in vorticity due to diffusion is computed by applying a Galerkin
weighted residual finite element method to solve the diffusion sub-step of (4.2)

∂ω

∂t
= ν∇2ω, (4.3)

using either backward Euler or second-order Crank–Nicholson time integration. The
boundary conditions applied on ω are of the Neumann type (Koumoutsakos, Leonard
& Pépin (1994) and enforce the no-slip condition on the surfaces of the bodies. The
kinematic relations between velocity and vorticity (derivatives of (4.1)),

∇2u = −∂ω

∂y
, (4.4)

∇2v =
∂ω

∂x
, (4.5)

are then solved on the mesh to evaluate the velocity field at the intermediate sub-step.
At this stage the vorticity field adjacent to the body surfaces has been calculated for
the current step by the solution of (4.3), shedding new vorticity as necessary. Hence
both no-slip and no-penetration boundary conditions (u = 0 and v = 0 for stationary
cylinders) can be applied for the solutions of (4.4) and (4.5). In this procedure an
initial solution of (4.1) for the streamfunction provides a lower accuracy velocity field
for the vorticity boundary condition to equation (4.3), after solving which, equations
(4.4) and (4.5), with the no-slip and no-penetration boundary conditions, can be
solved to provide a more accurate, corrected solution of the velocity field. Results
have been compared with and found to be more accurate than solutions of either
the streamfunction field (i.e. omitting the step of solving (4.4) and (4.5)) or the
velocity field omitting pre-calculation of the streamfunction (4.1). The convection
stage of (4.2) is solved by Lagrangian particle tracking. The nodal circulation changes
calculated on the mesh during the diffusion sub-step are assigned to point vortices,
which are then convected according to the local velocity (Lagrangian sub-step), using
a first-order scheme. The method of solution is then repeated for the next time step.
Because of the relative motion in the present study, a moving mesh is necessary for the
Eulerian part of the solution, but the Lagrangian convection procedure is only trivially
affected. The mesh is continually distorted to follow the moving boundaries, using the
spring–segment method. For large boundary displacements, the mesh may become
highly distorted, and this clearly affects the accuracy of the solution. To overcome this
difficulty, a re-meshing is performed when necessary, based on a constrained Delaunay
triangulation algorithm which reassigns the connectivity of the node points, forming
the mesh. The small discontinuities particularly visible in logarithmic plots of the
force (such as in figure 17) are due to re-meshing. The computations were carried out
with a domain size 50D wide and 85D long.

4.2. Plane impact of two cylinders with zero free stream

The plane impact of two circular cylinders of equal diameter immersed in
incompressible viscous fluid at rest at infinity is considered. The critical parameters
of impact to be studied are the ratio of the initial distance between the cylinders at
the start of their motion to their diameter, the Reynolds number based on a reference
velocity, usually the velocity of the moving cylinder and the ratios of the relative
velocities of the cylinders to that of the fluid. The two cylinders are assumed to start
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Figure 15. Effect of Re on CX . L/D = 3: �, (Re = 25); �, (Re = 50); �, (Re = 100); �,
(Re =200); �, (Re =500); �, (Re → ∞, Method of images); —, Narrow gap inviscid solution.

impulsively and move towards each other along their line of centres with the same
constant speed. At impact they are assumed to stop moving instantaneously and
remain stationary and in contact thereafter. This is the simplest case for two cylinders
resulting in an impact. It is idealized in that real impacts are invariantly three-
dimensional and involve structural deformations and some degree of elastic rebound,
all of which greatly complicate the analysis and are not considered here. As the two
cylinders approach each other finally towards impact, the gap between them becomes
very small. Resolution of this flow requires locally very small mesh elements and also
very small time steps. At impact the boundaries touch, and therefore �Ψ ∗ between
the cylinders becomes zero. The inviscid computation of �Ψ ∗ for two cylinders
impacting shows that �Ψ ∗ �

√
2β1/2. The infinite rate of change as β → 0 may be

one source of the numerical oscillations observed in the viscous flow computations
after impact. In figures 14 and 15 the resulting force coefficient acting along the line
of centres (repulsion positive) on either cylinder is plotted versus the dimensionless
time coefficient. The initial separation distance between centres L is relatively small
(3D or 5D), and the Reynolds number Re is also small. Hence the flows remain
essentially symmetric throughout. In these plots, the inviscid force derived in the
previous sections for the same motion is also plotted, as is the approximate narrow
gap inviscid solution.

Figure 14 shows the result of changing the initial separation L between the cylinders.
L is constrained by the need to limit computation times. It is clear from the results
shown for L =3D and 5D that as long as the initial separation is sufficient at the
start for the cylinders to be effectively independent and not so large that natural flow
asymmetry develops, the parameter L/D does not significantly affect the flow-induced
force on the cylinders. Figure 15 shows the effect of changing the Reynolds number.
The repelling force coefficient before impact on each cylinder, as would be expected
due to the increased resistance to the transverse flow in the gap, is larger than
the inviscid force and decreases towards the inviscid force with increasing Reynolds
number.
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All the computed results show reduction in the rate of increase of force as t∗ → 0.
At the highest Reynolds number computed , Re = 500, the CX curve ultimately falls
below the inviscid force curve at the smallest t∗. The computed results in the final
stages of closure of the gap become progressively less accurate due to mesh resolution,
because of constraints on re-meshing. It is therefore believed that the reduction in
the rate of increase of the force is a numerical artefact. If so the computed results
suggest that CX (viscous) is singular at contact with the power dependence of t∗−1/2

similar to the inviscid force. The limit of infinite force is supported by the work
of Brenner (1961) for the weaker case of a sphere impacting a plane, showing that
the force is singular in that case, but Stimson & Jeffery (1926) for the case of two
spheres impacting indicate a finite limit. Christensen (1962) has shown that within the
assumptions of lubrication theory, which ignores the inertia terms, the force between
two cylinders remains finite at contact. In the inviscid case it is the inertia terms which
dominate and cause the singularity at impact. The viscous shear force changes the
flow profile in the gap, adding resistance and hence increasing the value of pressure
gradient along the gap above that required to accelerate the bulk flow which is
unchanged. If one now considers the motion of two free cylinders approaching one
another at high Reynolds number and decelerating due to the force induced between
them and take the above asymptotic inviscid fluid force for constant cylinder velocity,
CX ∼ (π/2)(−t∗)−1/2, as a guide, the deceleration of each cylinder is given by

d2x

dt2
= −πρD3/2

4m

∣∣∣∣dx

dt

∣∣∣∣
3/2

(timpact − t)−1/2,

where m is the mass of the cylinder per unit length. Integrating this equation, ignoring
the effect of cylinder deceleration on the flow, shows that the ratio of the velocity
of the cylinders at impact U ′

x to their velocity at the start of the motion Ux is
U ′

x/Ux � [1 + (L/D)1/2/m∗]−2, where m∗ is the mass ratio of the cylinder to the mass
of fluid it displaces, and L is the initial gap between the cylinders at the point at
which they have the ‘starting’ velocity Ux . Inserting typical values such as m∗ =3 and
L/D =1, for example for marine riser pipes, shows that the fluid force during impact
is likely to slow the cylinders significantly (in this case U ′

x/Ux 	 0.56) but not to a
negligible impact velocity. In figure 16 contour plots of the dimensionless vorticity
ω∗ = ωD/Ux , for the case in which L =5D, Re =100, are shown for various times
ranging from shortly before impact to sometime after. Immediately after impact,
secondary boundary layers of opposite vorticity are created beneath the original
boundary layers formed around the cylinders during the motion prior to impact. Also
after impact, primary vortices formed from the initial wakes and boundary layers move
around the bodies and convect transversely parallel to the transverse symmetry plane.
Similarly secondary vortices are formed by rolling up of the separating secondary
boundary layers. The self-induced velocity field of each primary vortex pair is such
as to cause it to convect outwards along the plane of symmetry normal to the
cylinder motion. The opposite is true of the secondary vortices which are nonetheless
convected outwards by the stronger primary field. Figure 17 shows that after impact,
if the cylinders remain in contact and motionless as has been assumed for these
calculations, the force reverses to a large negative (attractive) force followed by a
gradual monotonic decrease in magnitude. This effect is due to the adverse negative
pressure gradient which has to develop immediately on either side of the contact point
to decelerate the outward transverse motion of the fluid, which has been generated
by the cylinder motion before impact.
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Figure 16. Vorticity contour plots for the case of plane impact of two cylinders with zero
free stream at successive time steps.
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Figure 17. Logarithmic plot of CX . Symbols as in figure 15.
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Figure 18. Force coefficient CX as cylinders arranged in-line, approach impact in a uniform
stream (Re =100, L/D =3 and Ux/U∞ = 1 except as shown). Upstream cylinder: �, �,
(Ux/U∞ = 0.5); 
, (L/D = 5); �, (Re = 200). Downstream cylinder: �, �, (Ux/U∞ = 0.5);
�, (L/D =5); �, (Re = 200).

4.3. Cylinder impact in a uniform stream: in-line cylinder arrangement

In this section the impact of the cylinders is considered in the presence of a free
stream. In such cases the pre-existing vortex wakes of the cylinders before they start
to interfere become relevant. The flow may no longer be symmetrical, in which case
the plane of the shed vortex street in the wake of each cylinder becomes important.
As a result many wake–cylinder interactions are possible, and only a few cases have
been examined. In the first case with the cylinders arranged in-line with the free
stream, the upstream cylinder is held fixed in the uniform flow, and the downstream
cylinder, after being held fixed in the flow for the time sufficient enough for both to
have started to form asymmetric wakes, moves steadily towards the upstream one
until impact. After impact both cylinders are held stationary as earlier. Figure 18
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Figure 19. Logarithmic plot of the force coefficient CX as cylinders arranged in-line,
approach impact in a uniform stream. Symbols as in figure 18.

shows the behaviour of the in-line forces on both cylinders up to impact. These forces
are plotted on logarithmic scales in figure 19, showing that they increase at a rate of
approximately t∗−1 for a substantial period before impact. However a final reduction
in rate to approximately t∗−1/2 is seen in the final stage up to impact. But this stage
for which the separation is less than 5% of the cylinder diameter may be affected by
grid resolution.

In figure 20 vorticity contour plots are shown for the case in which Ux/U∞ =1,
Re = 100 and an initial distance between the cylinders equal to L = 5D. The Reynolds
number for this case is based on the velocity of the free stream. The secondary
vortices of the downstream-moving cylinder after impact move at right angles to
the line joining the centres of the cylinders. They grow to a diameter approximately
equal to the cylinder’s diameter. A pair of secondary vortices from the downstream
cylinder, under the influence of the free stream, envelope these two vortices. At a
much later time, t∗ = 38.3, the two cylinders start to generate a single Von Kármán
vortex street wake. Figure 19 shows the effect of velocity ratio (cylinder velocity/free
stream velocity) and Reynolds number for this type of impact. As for the case of
plane impact in the absence of a free stream, the initial distance between the cylinders
if at least 3D does not significantly affect the final force coefficient. On the other
hand Ux/U∞ and Re are found to affect the force, with the ratio of the velocity of the
cylinder to the free stream having the greater effect. The influence of these parameters
is, as expected, greater on the drag coefficient of the moving cylinder than on the
fixed cylinder.

4.4. Cylinder impact in a uniform stream: side-by-side arrangement

In this case, the cylinders are considered initially fixed in a side-by-side arrangement.
After a period during which steady shedding of their wakes is established, both
cylinders start to move impulsively towards each other across the stream with equal
and opposite velocities until impact, when their motion terminates, and they remain
fixed. When vortex wakes are established behind the cylinders, the phase difference
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Figure 20. Vorticity contour plots at successive time steps for the case of impact of two
cylinders arranged in-line, in the presence of a free stream.
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Figure 21. The force coefficient CX , as the cylinders, aligned side-by-side approach impact,
in the presence of a free stream (Re = 100, L/D = 3 and Ux/U∞ = 1 except as shown).
Lower cylinder: �, �, (Ux/U∞ = 0.5); 	, (L/D = 5); �, (Re = 200). Upper cylinder: �, �,
(Ux/U∞ = 0.5); �, (L/D =5); �, (Re = 200).
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Figure 22. The drag force coefficient CY , as the cylinders, aligned side-by-side approach
impact, in the presence of a free stream. Symbols as in figure 21.

between the two wakes becomes a relevant parameter for the interaction. However, it
was found that for the range of initial distances between the centres of the cylinders
tested (L < 5D) the cylinders always tended to shed in-phase (see figure 24) due to
mutual, although weak, interference. The inwards motion of the cylinders then caused
some changes of phase before impact. After impact, a single-body wake was formed
behind the two cylinders. As for the case of in-line arrangement, the influence of
varying initial spacing, velocity ratio and Reynolds number were investigated. Fig-
ure 22 shows plots of the streamwise force (CY or CD) for a range of L/D, Re and
Ux/U∞ for each cylinder. In the cases considered the initial distance L = (3D and 5D)
between the cylinders does affect the behaviour of the force coefficient close to impact,
in contrast to the in-line cases for which the effect of initial distance appeared to be
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Figure 23. Vorticity contour plots at successive time steps for the case of impact of two
cylinders arranged side-by-side, in the presence of a free stream.

negligible. Clearly in the side-by-side cases the phase of the vortex shedding has a
much stronger influence on the flow through the closing gap than in the tandem cases.
The effect on the streamwise force of changing the Reynolds number over the range
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tested is fairly small. It should be noted that the force is always repulsion on both
cylinders, although the free stream velocity is as great as or greater than the cylinder
velocities in both cases. There are only slight differences in the force amplitudes at
the same time due to wake asymmetry.

For all the viscous cases, apart from that of the upstream cylinder in the in-line
impact problem, the values of the force coefficient along the line of cylinder centres
are quite similar. This suggests that as the gap closes the flow properties in the gap
are dominant over other flow field effects such as the wakes of the cylinders and
the flow direction. On the upstream cylinder for the in-line arrangement, the in-line
force coefficient CX is slightly lower. For all cases, CX appears to increase towards
impact at a rate fairly close to t∗−1/2, until mesh resolution effects become significant.
In figure 22 the streamwise force coefficient CY for the side-by-side arrangement is
plotted for both cylinders and for different values of the parameters L/D, Ux/U∞
and Re. At t∗ ∼ − 0.2, CY changes sign for all cases. This unexpected result seems to
be due to the narrow gap squeezing fluid out from between the cylinders generating,
preferentially because of the incident stream, a downstream jet at impact (see fig-
ure 23). This force also similarly appears to increase up to impact approximately
as t∗−1/2. Relative to the fluid in these ‘side-by-side’ cases the cylinders approach
one another symmetrically and obliquely. It is reasonable therefore to expect that a
component of the very-large-impact repulsion force will be apparent in the streamwise
direction, overwhelming the relatively smaller free-stream-induced drag, asymmetry
causing this component to be directed forward.

5. Conclusions
The flow fields and resulting forces which occur when a pair of circular cylinders

move rectilinearly until contact have been numerically simulated assuming two-
dimensional flow. Cases of both moving cylinders impacting two-dimensionally along
their line of centres in otherwise stationary fluid and when immersed in a uniform free
stream, have been examined. The first part of the paper treats the fluid as inviscid
and computes the flow field by means of conformal transformation and series of
image singularities. Results are compared with previously published results and show
that when two cylinders move to impact in an otherwise stationary fluid the force
of repulsion in the final moments up to impact increases as t∗−1/2, where t∗ is the
dimensionless time to impact, becoming infinite at impact. If an incident free stream
normal to the line of centres of the cylinders is also present, the force still varies in
the final stages as t∗−1/2 but changes from repulsion to attraction when the velocity
of the free stream exceeds the velocity of the cylinders towards their impact point.
When the velocities are exactly equal the force remains finite at impact. A narrow
gap analysis is developed to confirm these results.

The second part of the paper presents results of viscous flow field computations for
the same cases, using a streamfunction–vorticity-based method on an unstructured
moving mesh to accommodate the relative cylinder movement. In this case the forces
are always found to be repulsion in the final stage of motion up to impact whether
a free stream is present or not. The forces increase in magnitude above the inviscid
forces as the Reynolds number is reduced. In these cases the viscous-flow-induced
force appears to retain the dominant inertia effect as t∗ → 0 and increases towards
infinite force at impact, with a power of t∗ of approximately −1/2. The case of in-line
cylinder impact in a free stream is less clear than the other cases in respect of the
power of t∗.
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Appendix. Order of integration and differentiation of the complex potential
around an expanding closed contour

A time-dependent expanding closed contour C in the ζ -plane and a complex
potential w(ζ, t) representing a time-dependent flow field in the same plane are
considered. Suppose that w(ζ, t) has k poles within C at the points ai , which stay
within the contour C as the contour changes with time. Then, the line-integral around
C of the time derivative of w(ζ, t) with respect to time is equal to the time-derivative
of the integral of w(ζ, t) around C; i.e. integration in space and differentiation with
respect to time may be interchanged even though the integration contour C is a
function of time: ∮

C

∂w(ζ, t)

∂t
dζ =

∂

∂t

∮
C

w(ζ, t) dζ. (A 1)

In order to derive the last result, w(ζ, t) is expanded near each of the poles ai , in
positive and negative powers of ζ − ai as follows:

w(ζ, t) = · · · + Ai,2(ζ − ai)
2 + Ai,1(ζ − ai) + Ai,0 +

Bi,1

ζ − ai

+
Bi,2

(ζ − ai)2
+ · · · , (A 2)

where Ai,j , Bi,j and ai are time dependent and complex numbers. Therefore,

∂w(ζ, t)

∂t
= · · · +

∂Ai,2

∂t
(ζ − ai)

2 − 2Ai,2

∂ai

∂t
(ζ − ai) +

∂Ai,1

∂t
(ζ − ai) − Ai,1

∂ai

∂t

+
∂Bi,1

∂t

1

ζ − ai

+
∂ai

∂t

Bi,1

(ζ − ai)2
+

∂Bi,2

∂t

1

(ζ − ai)2
+

∂ai

∂t

1

(ζ − ai)3
+ · · ·

(A 3)

From the last equation, the residue of ∂w(ζ, t)/∂t at the ai pole is ∂Bi,1/∂t . By Cauchy’s
residue theorem the integral of ∂w(ζ, t)/∂t around C is given as the following sum:∮

C

∂w(ζ, t)

∂t
dζ =

k∑
i=1

∂Bi,1

∂t
. (A 4)

The integral of w(ζ, t) around C in now evaluated by directly applying Cauchy’s
residue theorem. Its value is the sum of the residues inside C, and therefore

∂

∂t

∮
C

w(ζ, t)dζ =
∂

∂t

{ ∞∑
i=1

Bi,1

}
(A 5)

But the right hand sides of (A4) and (A5) are equal, and thus (A1) holds.
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